Search results for "particle filter"

showing 10 items of 25 documents

Tracking Moving Objects With a Catadioptric Sensor Using Particle Filter

2011

International audience; Visual tracking in video sequences is a widely developed topic in computer vision applications. However, the emergence of panoramic vision using catadioptric sensors has created the need for new approaches in order to track an object in this type of images. Indeed the non-linear resolution and the geometric distortions due to the insertion of the mirror, make tracking in catadioptric images a very challenging task. This paper describes particle filter for tracking moving object over time using a catadioptric sensor. In this work different problems due to the specificities of the catadioptric systems such as geometry are considered. The obtained results demonstrate an…

0209 industrial biotechnologybusiness.industryComputer scienceparticle filtersComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]02 engineering and technologycatadioptric cameravisual tracking[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Catadioptric system020901 industrial engineering & automation[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Robustness (computer science)Video tracking0202 electrical engineering electronic engineering information engineeringClutterCatadioptric sensor020201 artificial intelligence & image processingComputer visionArtificial intelligenceImage sensorParticle filterbusinessImage resolution
researchProduct

Coupled conditional backward sampling particle filter

2020

The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, …

65C05FOS: Computer and information sciencesStatistics and ProbabilityunbiasedMarkovin ketjutTime horizonStatistics - Computation01 natural sciencesStability (probability)backward sampling65C05 (Primary) 60J05 65C35 65C40 (secondary)010104 statistics & probabilityconvergence rateFOS: MathematicsApplied mathematics0101 mathematicscouplingHidden Markov model65C35Computation (stat.CO)Mathematicsstokastiset prosessitBackward samplingSeries (mathematics)Probability (math.PR)Sampling (statistics)conditional particle filterMonte Carlo -menetelmätRate of convergence65C6065C40numeerinen analyysiStatistics Probability and UncertaintyParticle filterMathematics - ProbabilitySmoothing
researchProduct

Adaptive Population Importance Samplers: A General Perspective

2016

Importance sampling (IS) is a well-known Monte Carlo method, widely used to approximate a distribution of interest using a random measure composed of a set of weighted samples generated from another proposal density. Since the performance of the algorithm depends on the mismatch between the target and the proposal densities, a set of proposals is often iteratively adapted in order to reduce the variance of the resulting estimator. In this paper, we review several well-known adaptive population importance samplers, providing a unified common framework and classifying them according to the nature of their estimation and adaptive procedures. Furthermore, we interpret the underlying motivation …

Computer scienceMatemáticasMonte Carlo methodPopulation02 engineering and technologyMachine learningcomputer.software_genre01 natural sciences010104 statistics & probability[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing0202 electrical engineering electronic engineering information engineering0101 mathematicseducationComputingMilieux_MISCELLANEOUSeducation.field_of_studybusiness.industryEstimator020206 networking & telecommunicationsStatistical classificationRandom measureMonte Carlo integrationData miningArtificial intelligencebusinessParticle filtercomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingImportance sampling
researchProduct

Distributed Particle Metropolis-Hastings Schemes

2018

We introduce a Particle Metropolis-Hastings algorithm driven by several parallel particle filters. The communication with the central node requires the transmission of only a set of weighted samples, one per filter. Furthermore, the marginal version of the previous scheme, called Distributed Particle Marginal Metropolis-Hastings (DPMMH) method, is also presented. DPMMH can be used for making inference on both a dynamical and static variable of interest. The ergodicity is guaranteed, and numerical simulations show the advantages of the novel schemes.

Computer scienceMonte Carlo methodErgodicity020206 networking & telecommunications02 engineering and technologyFilter (signal processing)Bayesian inferenceStatistics::ComputationSet (abstract data type)Metropolis–Hastings algorithm[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingTransmission (telecommunications)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingParticle filter[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithmComputingMilieux_MISCELLANEOUS2018 IEEE Statistical Signal Processing Workshop (SSP)
researchProduct

Group Metropolis Sampling

2017

Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. Two well-known class of MC methods are the Importance Sampling (IS) techniques and the Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce the Group Importance Sampling (GIS) framework where different sets of weighted samples are properly summarized with one summary particle and one summary weight. GIS facilitates the design of novel efficient MC techniques. For instance, we present the Group Metropolis Sampling (GMS) algorithm which produces a Markov chain of sets of weighted samples. GMS in general outperforms other multiple try schemes…

Computer scienceMonte Carlo methodMarkov processSlice samplingProbability density function02 engineering and technologyMultiple-try MetropolisBayesian inferenceMachine learningcomputer.software_genre01 natural sciencesHybrid Monte Carlo010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing0202 electrical engineering electronic engineering information engineering0101 mathematicsComputingMilieux_MISCELLANEOUSMarkov chainbusiness.industryRejection samplingSampling (statistics)020206 networking & telecommunicationsMarkov chain Monte CarloMetropolis–Hastings algorithmsymbolsMonte Carlo method in statistical physicsMonte Carlo integrationArtificial intelligencebusinessParticle filter[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingcomputerAlgorithmImportance samplingMonte Carlo molecular modeling
researchProduct

Tracking your detector performance: How to grow an effective training set in tracking-by-detection methods

2015

In many tracking-by-detection approaches, a self-learning strategy is adopted to augment the training set with new positive and negative instances, and to refine the classifier weights. Previous works focus mainly on the learning algorithm and assume the detector is never wrong while classifying samples at the current frame; the most confident sample is chosen as the target, and the training set is augmented with samples selected in its surrounding area. A wrong choice of such samples may degrade the classifier parameters and cause drifting during tracking. In this paper, the focus is on how samples are chosen while retraining the classifier. A particle filtering framework is used to infer …

DetectionTrackingTracking-by-detectionParticle filteringself-learning
researchProduct

Rotor-bar breakage mechanism and prognosis in an induction motor

2015

© 1982-2012 IEEE. This paper proposes a condition-based maintenance and prognostics and health management (CBM/PHM) procedure for a rotor bar in an induction motor. The methodology is based on the results of a fatigue test intended to reproduce in the most natural way a bar breakage in order to carry out a comparison between transient and stationary diagnosis methods for incipient fault detection. Newly developed techniques in stator-current transient analysis have allowed tracking the developing fault during the last part of the test, identifying the failure mechanism, and establishing a physical model of the process. This nonlinear failure model is integrated in a particle filtering algor…

EngineeringFailure analysisBar (music)particle filtersremaining life assessmentFault (power engineering)Fault detection and isolationlaw.inventionlawspectrograminduction motorsElectrical and Electronic EngineeringSpectrogramFatigueFault diagnosisbusiness.industryRotor (electric)prognostics and health management (PHM)Prognostics and health management (PHM)Structural engineeringfault diagnosisfrequency-domain analysisrotorsInduction motorsControl and Systems EngineeringRotorsPrognosticsRemaining life assessmentINGENIERIA ELECTRICAfatigueTransient (oscillation)Particle filtersbusinessParticle filterInduction motor
researchProduct

Group Importance Sampling for particle filtering and MCMC

2018

Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discus…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencePosterior probabilityMonte Carlo methodMachine Learning (stat.ML)02 engineering and technologyMultiple-try MetropolisStatistics - Computation01 natural sciencesMachine Learning (cs.LG)Computational Engineering Finance and Science (cs.CE)Methodology (stat.ME)010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingStatistics - Machine LearningArtificial IntelligenceResampling0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringComputer Science - Computational Engineering Finance and ScienceStatistics - MethodologyComputation (stat.CO)ComputingMilieux_MISCELLANEOUSMarkov chainApplied Mathematics020206 networking & telecommunicationsMarkov chain Monte CarloStatistics::ComputationComputational Theory and MathematicsSignal ProcessingsymbolsComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyParticle filter[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithmImportance samplingDigital Signal Processing
researchProduct

Compressed Particle Methods for Expensive Models With Application in Astronomy and Remote Sensing

2021

In many inference problems, the evaluation of complex and costly models is often required. In this context, Bayesian methods have become very popular in several fields over the last years, in order to obtain parameter inversion, model selection or uncertainty quantification. Bayesian inference requires the approximation of complicated integrals involving (often costly) posterior distributions. Generally, this approximation is obtained by means of Monte Carlo (MC) methods. In order to reduce the computational cost of the corresponding technique, surrogate models (also called emulators) are often employed. Another alternative approach is the so-called Approximate Bayesian Computation (ABC) sc…

FOS: Computer and information sciencesComputer scienceAstronomyModel selectionBayesian inferenceMonte Carlo methodBayesian probabilityAerospace EngineeringAstronomyInferenceMachine Learning (stat.ML)Context (language use)Bayesian inferenceStatistics - ComputationComputational Engineering Finance and Science (cs.CE)remote sensingimportance samplingStatistics - Machine Learningnumerical inversionparticle filteringElectrical and Electronic EngineeringUncertainty quantificationApproximate Bayesian computationComputer Science - Computational Engineering Finance and ScienceComputation (stat.CO)IEEE Transactions on Aerospace and Electronic Systems
researchProduct

On resampling schemes for particle filters with weakly informative observations

2022

We consider particle filters with weakly informative observations (or `potentials') relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of continuous-time Feynman--Kac path integral models -- a scenario that naturally arises when addressing filtering and smoothing problems in continuous time -- but our findings are indicative about weakly informative settings beyond this context too. We study the performance of different resampling schemes, such as systematic resampling, SSP (Srinivasan sampling process) and stratified resampling, as the time-discretisation becomes finer and also identify their continuous-time l…

FOS: Computer and information sciencesHidden Markov modelparticle filterStatistics and ProbabilityProbability (math.PR)Markovin ketjutStatistics - ComputationMethodology (stat.ME)resamplingFOS: Mathematicsotantanumeerinen analyysiPrimary 65C35 secondary 65C05 65C60 60J25Statistics Probability and UncertaintyFeynman–Kac modeltilastolliset mallitComputation (stat.CO)path integralMathematics - ProbabilityStatistics - Methodologystokastiset prosessit
researchProduct